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1. INTRODUCTION

1.1 RAVEN for Uncertainty Quantification

RAVEN, under the support of the Nuclear Energy Advanced Modeling and Simulation program, has
been tasked to provide the necessary software and algorithms to enable the application of the conceptual
framework developed by the Risk Informed Safety Margin Characterization (RISMC) [1] path. RISMC is
one of the paths defined under the Light Water Reactor Sustainability Department of Energy program [2].

One of the most challenging requests of the RISMC framework is a holistic estimation of margins,
and therefore uncertainties, in nuclear power plant system analysis. Those estimations, in conjunction
with more accurate simulation tools, should enable an optimization process leading to safer and more
economical competitive nuclear power plants.

The improvement of the accuracy of the simulations is tasked to other Department of Energy projects
like RELAP-7 [3], while margin quantification and the generation of information suitable to perform
safety margin managements is assigned to RAVEN.

How the uncertainty of the input parameters impacts the simulation results (uncertainty propagation)
is clearly a fundamental step of the process. The uncertainty propagation analysis is a complex process
and several methodologies are currently used. Before deploying innovative algorithms, base capabilities
need to be implemented and tested. This is the current stage of the RAVEN development project.

Earlier reports [4] show the implementation of Monte Carlo sampling methodologies in RAVEN and
dynamic event trees [5]. The next step of this strategy is described here and involves the implementation
of the infrastructure to support the generalized Polynomial Chaos [6] methodology for uncertainty
propagation.

In this report, we will cover the following subjects: introduction of the generalized Stochastic
Polynomial approach, exemplification of the approach in a bi-dimensional case, results of the
implementation tests, and a direct comparison toward a Monte Carlo approach for the estimation of the
maximum fuel temperature in a simplified Station Blackout (SBO) pressurized water reactor (PWR)
accident scenario.



2. Generalized Polynomial Chaos
2.1 Generalized Polynomial Chaos by Orthonormal Expansion

2.1.1 Mono-Dimensional Case

Of the large amount of literature on stochastic polynomials, a good starting point is provided by
Xiu and Karniadakis [6]. We present a brief introduction focused on the implementation strategy.

In general, any response (U) monitored at the plant {clad temperature, max pressure etc.) at a
given point in time may be represented as a funetion of the initial condition of the plant and of the
values of the parameters used to construct the mathematical models. For our purpose, we consider a
split of the input and parameter space, such that g are the initial conditions and parameters not
subjected to a probabilistic distribution, while & are the ones showing such stochastic behavior. The
dependence of U from $ could be therefore neglected since the dependence is not relevant 1o the

discussion:
v=u(@)
Eq.2-1

Next, we introduce the Lebesgue space equipped with measure p (for simplicity, we assume a one—
dimensional problem £ = x):

LS, ) = {f(f)lf f)*du < 00},
5

Eq.2-2
with S being the support of the measure, The scalar product in such space is therefore:
(F©.9©), = | F©ecauo,
s Eq.2-3
or, under the assumption that the measure admits a density function p(&)dé = du(é):
; = ; = dé.
(F©.9©), = (F©.90),, = | F@a@pE)as
Eq.2-4

Now, if {B;(§)} is a complete function based on L2(S, u), the Fourier theorem ensures that the
equality

e8]

UE) = ) cuBa®)

n=0
Eq.2-5
is respected in the u norm if the moment ¢,, of the series is defined as follows:
__UDB®) g _ L VOBEpE)ds
T (BB [, Ba©B(Op©)dE
Eq.2-6

If B, (&) is an orthonormal base in L2(S, W), we have:



L B (€)B()p(©)dE = 6y cn=f5 U(E)BL(©)p(©)ds,

Eq.2-7

and in faect:

ey = L U@ BA(O)p(E)dE = L ZO e By (§) By (O)p(§)dE =

= e [ B @BaOPEE = Sunc = e
5

n'=0

To reformulate the problem in I? space with a standard measure, it is sufficient to replace B, (§) with
B (&), where:

Bu(§) = Bu(E)Wp(©)

Eq.2-8

g, = f VB (©)de f U B ()P dE
S S

Eq.2-9

Clearly, the orthonormal property of B,,(§) over L2(§, w) translates in the orthonormal property for
B, (&) over 12(S, §). The introduction of the L2(S, ) space finds its utility when the measure is
defined as:

pdf () = Vp(®.
In this case, the expected value of U (&) (E[U(&)]) has an immediate formulation with respect to the
term of the Fourler series:

U@ = | U@paf@ds=[ Y cfu® pdE
5 h=0

S

= [ Y em@p@ds = [ Y am@ Bo@VSp©)dt = 5V
S h=o 5 =0

Eq.2-10
where these properties are used:
B, (&) = B,(E)y/p (&),
1
B = —
Eq. 2-11

with is as the normalization constant for the polynomial of order 0 where S=fs p(E)dé.

V5

In

Table 1, the most common distribution functions are paired with their respective orthonormal
polynomials.



Table 1: Correspondence between density function and orthogonal polynomials.

Distribution Frobability Distribution Function Polvaomials Support
Uniform 1/2 Legendre [—1.:1]
Normal ! _% Hermite [=oo
oi2m o]
Exponential e~ Laguerre [0 : oo]
Beta x%~1(1 — x)F-1 Jacobi [« 1]

2.1.2 Multi-Dimensional Case

The extension to the multi-dimensional case has no special complication if care is used in merging the
different density functions. As in the mono-dimensional case, we can introduce the following I.ebesgue
space:

20 ={r@1 [ 1w

Eq.2-12
If dim [{{_}] = L, we define first the multi-dimensional polynomial base using vector indexing:
€ {(ny,..,n.)} = N to obtain the expansion of U(a so that:
L
By = anl (’51);
= Eq. 2-13
L
cn = L u(d) (H By (fz))p(f)df - L U(E)Brp(9)dE,
Eq.2-14
L
5.0 = o[ [
= Eqg. 2-15
L
o= [ 0@([ [ ) o0,
s &
= Eq. 2-16

where the polynomial has already been assumed to be orthonormal. Then the expansion series is
similar to what we found in the one—dimensional case:
U(#) = L7 caBa(§) in the unorm,
and U(a =Yr-o Eﬁgﬁ(f in the standard norm.



Many times, the probability distributions of the input parameters ({—) are uncorrelated, and therefore,
if we impose that the density function of the measure is the Cumulative Distribution Function of those
random variates, it follows that the density function is (completely) multiplicatively separable
(completeness is true, of course, if all the input variables are uncorrelated).

For completely multiplicatively separable density functions, the construction of the orthonormal base
in the multi-dimensional space, with respect the standard measure d&, is straightforward:

p(e‘)=1jm

L
Br= | [ BV @D
i=1

& = L u(®) (f[Bni(a) /pt((ft))da)

Another interesting discriminant for approaching the construction of the orthonormal polynomial base is
provided by the existence of a vector sub space (0 € {f_ }), such as the directional derivative of the density
function equaling zero whenever i € . If such a linear space exists, then the effective dimensionality of
the input space could be reduced and the study of the function / (f ) could be correspondingly simplified.
For this report, this condition will not be investigated further, but it could be very useful when the input
space is representative of a physical field. For cases when the dimension of 0 is rather large but strongly
correlated, reducing the effort required to represent the original UJ (E—) function is possible and highly
advantagecous.

Eq.2-17

2.2 Numerical Approximation of Generalized Polynomial Chaos by
Orthonormal Expansion

The first step toward achieving a numerical approximation of the stochastic expansion of the IJ (a 18
introducing a finite expansion approximation over the orthonormal polynomial base. If N; is the
maximum polynomial order over the variable &;, than the cardinality of # is [#7] = [[}_, N}, and the
function UJ (E—) could be approximated by:

U(@ — 2%1\;16 e NL) ¢z B (#(a) in the u nerm,

u(é) = ylia o Nl ¢:B:(&) in the standard norm.

=0
Eq.2-18
For simplicity, we can assume that the density function is completely multiplicatively separable. This
simplification does not affect the substance of the following derivation since this condition is always

achievable by a truncated development over a proper base on 12 (S, .f_) or a suitable variable change. The
definition of the moment rests unaltered from Eq. 2-17.

Morcover, we can rewrite UJ (E) as follows:



[N o Ny [N1 o Ng] N;

U(’f_) & Z ~ﬁ§ﬁ(€—) = Z ERHBWGI)W = H z Enan;('ft)\/m

n=0

Eq. 2-19
Where:
N;
D& = Y enbu GNP 2 = | 0108 VT
n=0 t
Eq. 2-20

Once a proper finite polynomial representation {Bnl (D p(ft)} has been chosen to represent IJ (a,
the main task is the calculation of ¢,. Two approaches could be followed; one relies on a projection of

the equation set representing the system of which U (E_) is solution on By, (§;)+/p(¢;). Usually this leads to
a hierarchical system of equations with unknown ¢,,,. The second approach seeks a numerical solution of

the integral representing the ¢, by the knowledge of U;(&;) By, (£;)+/ p($;) for specific point of the input
domain ¢, ;. The second methodology is the one currently implemented in RAVEN since it does not
require the alteration of the software solving for I/ (a, which is, in our case, RELAP-7. Given that this
second methodology relies on the knowledge of the U ({_) only at selected points, it is named Collocation
Generalized Polynomial Chaos [7].

Of course, the choice of the points where the function U, (§,)B,,(£,)+/ p(§;) is evaluated could be

optimized to minimize the number of code runs needed while maximizing the order of the polynomial
representation achievable. This is obtained by the Gauss integration rule pertinent to the orthonormal
polynomial set under consideration. In general, using the Gauss integration ‘p’ points will integrate
exactly a polynomial of order n=2p-1. It is important to recognize that the integrand that appears in the
definition of ¢y, is of degree 2N, in fact:

Ny

> EnBuEOVPED | BV,
0

nr=

Cny = L U (E)By, (§)V p(EDdE = f

H 5t
Eq.2-21

2
where the integrand of highest degree is (BNl(f 1)) . This implies that to achiecve an overall accuracy of

degree Ny, it is necessary to have a minimum number of points satisfy p = N, + 1 (rounding 3 to 1 is the
consequence of the number of point being an integer).



3. 2D Application Example

It is useful to illustrate the methodology with a two-dimensional example. Consider a system
response (&) mapped as a function of two random variates (x,y). Moreover, assume it is completely
multiplicatively separable, so & = & x¢y- The corresponding probability density, density, and measure of
the support in the corresponding metrics are provided below:

a af () = —
df (x) = 207, pdf @) = ——,
p f(X) o Zﬂ'e 7 (yb_ya)
1 _(x—m)2 ( ) 1
= I P =" %
P () e O — ¥a)?
0 00 (x—m)? Yb P 1 de
o= [ptn= oo | T r=), =Gy @
1 1 1

— o _

o22m Com Oy — ya)

Eq.3-1

3.1.1  From the Standard to the Actual Reference System
The orthonormal polynomials needed in our case are the ones that satisfy the following orthonormal
conditions:

(x=m)? 1

1 = _lxe—m)”
He, (x)He, (x)e o2 dx =468,,, e —
| Hen@tie, o - T

o2

Yh
f Ly ()L () = By
Ya
Eq.3-2

Since these are not available in the literature, generic forms are provided for standardized p. Using these
forms, it is possible to derive ones needed in other specific cases. In this specific case, we need a sct of
normal polynomials with respect to the class of weighting function represented by e ~2x” and constant
values that respectively are given by the Hermite and Legendre polynomials. The expression of the first
few terms of their standard series is provided in Table 2 along with the orthonormal conditions.



Table 2: Legendre and Hermite first term of the series.

Order Hermite Legendre
0 ! i
4\;‘ 21 2
1
1 x' = x,\/_§
V27T \/E
2 (% — 1) —— (3x"2 — DV2V5
V22
3 (x — 3x") L (5x"% — 3x W27
12m6
Orthonormal . _x? 1
H ’ r H ! r 2 d r — 6‘ ' F Il r r —
condition f_oo en (¥ ) Hem (x')e X = Ompn f_1Ln(x W D dx’ =8y

The following coordinate changes are applied to obtain the needed polynomials:

Hermite Legendre
, V2(x-m) yr= 2= On ¥y
o 0 W 7D
T Ybp — Ya » 1 Ya
x = x +m, = '
Na y > y + 5

Eq.3-3

By applying these coordinate changes in the orthonormal conditions, it is possible to derive the
relationship between the polynomials in the actual (x,y) system and in the reference one (x', y").

Hermite:

First, the coordinate transformation is applied into the orthonormal condition for the standard system
in Table 2:

g2 dx =§
mmn-
o) o 227

JZZH\/EIOO He! (\/i(xa— m)) He! (\/E(x - m))a 1 lcJ_(x—m)z

To satisty Eq. 3-2, He,,, (x) has to be expressed by:

Hep (x) = He{n(x'(x))\/ o2mv2 = Hel, (ﬁ(x_m)) Va2my2.

g

Eq.34

(e=m)?

e o2 ,and He,, (x) is

He,, (x) is therefore orthonormal over [—oo, oo] with density function S

orthonormal over the standard norm with support [—e9, c0] and defined by:

- 1 _e=m)? VZ(x —m 1 _e-m)?
He,, (x) = He,,(x) e 202 =He,, (#) o2n\2 e 202

ovV2T g oV 2m
- VZ(ix —m)\ V2 _(xz‘_”;)z

= —_— g2
e = \/Ee

Eq.3-5

This derivation is checked against the orthonormal condition for a few moment integrals in appendix 1.

10




Legendre:

Recasting the standard Legendre polynomials from Table 2 L., (v") following the coordinate
transformation in Eq. 3-3 leads to:

20 — ¥a) f Iy O D) =5 y)z = B
Ya

Eq.36
The normalization condition to satisfy Eq. 3-2 is therefore met by posing:
(2 = Ot V)
Loy = Ly (Y OIWN200 — ¥0) = L ( T V200 = ya)-
a
Eq.3-7
L., (¥) is consequently orthonormal over [v,, v, ] with density function 5 ly > and
b~ Ya
- 1 2y — b + ¥a) 2
L) =Lpn(y)———==1L (
" Ty TN O — ) b — ¥Ya)
Eq.3-8
is orthonormal over [v,, v, | with the standard measure.
It is required in this case to verify that fyb Lo(W)Lg (y) T dx=1:
A2 y 1
Ly = \/— Lo(y) = \/— . = (b — Ya), Lo(}’) =
(yb - ya)
J‘yb 1 Yh \/ \/ 1 1 Yh
L) 745 = | VOB 3O —30) dx = | “ax.
e T Oy — )2 e R TNy — Y Gb =Y by,

Now that the new orthonormal polynomials have been defined using the polynomials in the reference
system and the change of coordinates described by Eq. 3-3, the expansion series becomes:

Nx
— (x— m)
§ = fx‘fy = Z fnx (Henx(x) 207 [Z fny Lny(y) — ))
T, =0 a
Ny
_ V2 —m)\V2 _om? , (2= O+ 5 2
B Z ‘f?'tx (Hem ( g ) U ) Z ‘fny b m( (yb - ya) ) (yb - ya)

Rr=0

Eq.3-9

11



Where the moments are expressed by:

b . b
e, = | SOy 0y = | 5,00, 0)

Ya

Ya

£, = f £, (e, ()dx = f £, (e, (x)
[

1 _&-m)?
—e 207 dx
ov2m
(r—m)?
T 202 dx,
Eq.3-10
1 d
——— y.
Wy — Ya)
Eq. 3-11

Table 3 reports the expression of the He,, (x) and Ly, (y) for a generalized reference system.

Table 3: Expression for the first 3 orders of Hermite polynomials.

Order Hey (x) Ln, )

0 V20Vn Oy = Ya)

1 zz//_j(x_m) 230y — ¥a)
2 2 —

5 Norir [(\/E(xa— m)) B 1} Bx* = D2y (7 — ¥a)5

3 iz [(\/Ecx - m))2 ‘ (5% = 30 (), — 907

2—||———] - 3|(x—-m)
Vo o
3.1.2 Numerical Evaluation of the Moment Integrals

Collocation methods have the characteristic of not altering the solution scheme for £ by introducing
additional equations for the solution of its moments but rather reconstructing those moments from the
knowledge of &, with respect to predetermined values of (x, v). Essentially, collocation methods
implement Gauss or Gauss-like methodologies with respect to the polynomial basis to compute the
moment integrals. Here we will illustrate only the exact Gauss methodology that has been implemented

into RAVEN,

Finding the Gauss point and weights is non-trivial and costly. Therefore, it is useful to use existing
external libraries. RAVEN makes use of NumPy [8], which provides the points and weights for the
standardized weighting and support functions. In this particular case, NumPy provides {w;, x";} and

{wj,y'j}, which satisfy:

Legendre

i

f_lg(y’) dy’ = Z w;g ('y’j),

i=1

12

Hermite

I
xr?
VT dx' = ) wif (),
i=1

Eq.3-12




Hermite:
The first step is to recall the coordinate transformation (Eq. 3-3) and the moment expression (Eq.
3-10):

, V2(x —m) o,
-=— or x =—x +m,

g ' V2
$ny = f_m ¢ (x)Hey, (M)%e‘&;ﬁ) dx.

Combining the two, after algebraic manipulation, it is possible to recast the integral in a form
compatible with the Gauss integration formula available.

V2o (® (o a2
én, = \/_\/_ (\/_x +m)Hem(x)e 4 dx’

J‘ (O’ X
=— —x’+m)He’ xNe ded e 4 dx'

Vo (* so X7 ¥
:ﬁf &y (ﬁx’ + m)He,’n(x’)e e 2 dx'.
12

If we assume f(x) = &, (%

x'+ m) He,, (x")e s, the quadrature formula we find is:

En, ‘{/‘Z lxrfx( % +m)Hem(x e

EqQ.3-13

In Appendix 2, an analytical test of the correctness of this derivation is reported, and the quadrature is
used to integrate a few of the initial moments of the series.

Before moving forward, there is an important remark to be made on the relationship between the
number of points in the quadrature and the overall accuracy of the Fourier representation of the &,
function. Let’s replace the expansion of £, in the moment integral expression:

Nx

b= [ Y b (Hew, 0= T Ve =T
= ) e, (x e 20° en (% 267 dx
" » = o TR o 2n N o2

_-m)?

= 22;,1.[ z ’Snfx He : (x))HEn (x)e o7

n’',=0

_e=my?

= 02211 f S Hey (x)Hey, (x)e o dx.
n' =0

From the last expression, we see that to compute accurately a moment of order N,., the integrands
need to be of order 2N,,. Given the rule that relates the number of points to the order of accuracy of any
Gauss rule (2/ — 1 = order), the number of points needed are:

13



2] —1 > 2N,.
Eq.3-14

This is a rule of general applicability for all Gauss-derived quadrature rules and thus will be not
repeated for the Legendre-based rules.

Legendre:

Combining the transformation of the coordinate (Eq. 3-3) and the definition of the Gauss rule in Eq.
3-12 for the Legendre polynomials, we have:

g(yﬁdy ’ ya) fya g(y' ) ’ ~ % =;w ¥ ()

Posing g(y'() = &n, I 5, (')

/(ysz fyjbg(y'(y)) /%dy - /%y) L y £, O, (v O)) /ﬁdy
:H i o (2528, 4 29 ey |2

I
\f‘( - a) ( - a) ’ (y a)
’Sny:%zwjfny(%yj—i_—y) "m(¥'})

finally:

i=1
Eq.3-15

3.1.3 Final Numerical Form

Substituting both expressions of the numerical integration of the moments (Eq. 3-13 and Eq. 3-15)
into the original expansion (Eq. 3-9) vields:

Ny
{x— m)

’S_z ’Sx'fy = z zwl'fx(x(x L))Henx(x(x [)) Henx(x (x))e 207

=0 L'=

z Z“’*‘fny (s ) ny (y(yli)) Lny(yl(y))],

ny=0 \ i=0

Eq.3-16
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or, using the polynomial expression in the reference system:

E=88, = i V_Z lx,fx( x+m)Hem(xr)ex; (Heﬁx(x')%e_%)

ny=0
\/ (yb Ya) ~Ya)
jy’fny 2 - 5 Y
n,=0
p +ya)\ ,, ; ) .
+Ta Lm(yj) Lm(y)
The coordinate mapping is:
. VZ2(x —m) g
= —) or x =—x +m,
o V2
(2= Optye) )= Gw —ya)y, L O+ )
(yb - ya) ' 2 2 -

314 Mean Values

Eq. 3-17

Eq.3-18

Starting with the definition of mean value and the definition of the orthonormal polynomials, we can

verify the relationship of the zeroth order moment and the mean value of the system response, as
computed in Eq. 2-10.

Hermite:
q a2mv2 1 _(xz-";)z p 1 _(xz—n;n)2
EOCx) N2m 0'\/2118 ' paf(ay= J\/Z?re
> > 1 _e-m? V2m
Elé] = xbd dx = x——F¢ o? dx = xf —d
€] f_mf pdf s = | gi—e™ 2 dx = f £ulTen ()
S0,
e f TZOE He, (x) Heg(x)dx = ——= {Dx\/_
Legendre:

15

Eq. 3-19



E[f]—fybf df o)d —fybf LI, S fybf L4
S A A S RN s ) Y Ty g
1

1 Yoo
T, SO = o= on

Eq. 3-20
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4. Application

Given the final goal of the RAVEN project, stochastic polynomials are tested with respect to their
capability to properly forecast the mean value and gystem respongse in low probability regions. The
accuracy of the polynomial representation of the system response is tested for a large range of values of
the input space (large variation of the input parameters £). In particular, its capability to predict the
location of an iso-surface iz analyzed, where the system response is constant and equal to an imposed
value for any variation of the input parameters within such surface (U(a = constant). When it divides
the input space in two regions—one leading to an output space that implies failure of the system, one
leading to safer outcomes {i.e. limit surface)}—this iso-surface has a special meaning and relevance to the
RAVEN project. The specific physical problem is described in the following paragraphs along with the
modeling choices and discussion of the results. In this case, the response of the system will be represented
by the maximum clad temperature achieved (U(a = TMax), and the limit surface will be the region of

Clad

the space where this value is equal to the clad failure temperature (T pax = Traiiure )-
Cled Clad

41 Case Description

In order to test the capabilities introduced with the new Stochastic Polynomial approach, a simplified
PWR probabilistic risk analysis {PRA) scenario is considered. Figure 1 shows the scheme of the PWR
model.

Prossarier

Loap B @ Loop A

oV

! ,J
{ ﬁ Hrat rachamprer B ﬁg Heat eachamper A

|
ﬁ :
s -

= Bvpass flow

Downesmer it Do mewmer A

werage eore chanmel —

Figure 1: PWR model scheme.

The reactor vessel model consists of the down-comers, the lower plenum, the reactor core model, and
the upper plenum. Core channels {flow channels with heat structure attached to each of them ) are used to
describe the reactor core. The core model congists of three parallel core channels and one bypass flow
channel. There are two primary loops (i.e., loop A and loop B). Each loop consists of the hot leg, a heat
exchanger and its secondary side pipes, the cold leg, and a primary pump. A pressurizer is attached to the
loop A piping system to control the system pressure. A time dependent volume (pressure boundary
conditions) component is used to represent the pressurizer. Since the RELAP-7 code two-phase flow
capability is not being used for this test, single-phase, counter-current heat exchanger models are
implemented to mimic the function of steam generators in order to transter heat from the primary to the
secondary loop.

4.2 Station Blackout (SBO) Scenario

The simulation of an SBO iitiating event required the introduction, in the control logic, of several
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components (see Figure 2), including:

Set of three diesel generators (DGs) and associated emergency buses[

Primary power grid line 138 KV (comnected to the Normal Station Supply Transformer
switchyard)

Auxiliary power grid line 69 KV (connected to the Reserve Station Service Transformer [RSST]
switchyard)

Electrical buses: 4160 V (step down voltage from the power grid and voltage of the electric
converter cormected to the DGs) and 480 V for actual reactor components (e.g., reactor cooling
system).

138KV 69 KV
NSST RSST
- 4160 V -

480 V[ Aux. 480 V
T11A }——0—{ csolte |-°—| T12A
480 V 430 vV
.
480 V 480V
-
480 V 480V
-
1

1
seov (ol

( (

1
-

1 4160V
('! (‘l

Emergency buses

Figure 2: Scheme of the electrical system of the PWR model.

The scenario is the following:

An external event causes a loss of off-site power due to damage of the 138 kV line and RSST

switchyard. The reactor successfully scrams, and thus, power generated in the core follows the

characteristic exponential decay curve.

The set of DGs fails to start, and hence, conditions of SBO are reached (4160 V and 480 V buses

are not energized). All cooling systems are subsequently off-line.

Without the ability to cool the reactor core, its temperature starts to rise.

In order to recover alternating current electric power on the 4160 V and 480 V buses, two

recovery teams [are assembled with the following strategy:

- Recovery Team 1 focuses on the recovery of the DGs. Due to internal damage at the DG
building, two DGs (i.e., DG1 and DG3) need to be repaired (see Figure 3[a]).

- Recovery Team 2 focuses on the recovery of the RSST switchyard. 69kV line 1s energized,
but the RSST switchyard needs to be recovered (see Figure 3[b]).

- Meanwhile, the owming company 1s working on the restoration of the primary 138 kV line
(see Figure 3[c]).

- When the 4160 V buses are energized (through the recovery of the DGs, RSST, or 138kV
line), the auxiliary cooling system is able to cool the reactor core down, and thus, core
temperature decreases.
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Because of the uncertainties associated with the recovery of both of the DGs, the RSST, and the
138KV line, a stochastic model should be used to represent these events. Given the time scale associated
with the dynamics of the REL AP-7 PWR model, the corresponding probability distribution functions are
as follows:

e DGs: Team 1 is required to gather a dead time of 100s at the DGs building, and DG1 repair time
(Toe) has a normal distribution, having mu = 800 and sigma = 200. This distribution is also
truncated such that 0 < Tpg < 2500. The recovery time of DG3, Tpgs, is proportional to Trog;.
Such relation has been modeled using multiplication factor Ty; (i.e., Tngs = Tog: * T12). Tz 18
uniformly distributed between [0.5 1].

e RSST: a dead time of 400s is needed to assess the damage at the RSST switchyard and to plan its
recovery. Recovery time for RSST, Tgrsgr, is normally distributed with mu = 1400 and sigma =
400.

e 138KV line: the recovery of the main alternating current line, Tz, is normally distributed with
mu = 2000 and sigma = 500.

In addition, the clad failure temperature is not fixed, but it is probabilistically distributed with a
triangular distribution characterized by the following parameters:

¢ mode: xPeak = 2200 F(1477.59 K), 10 Code of Federal Regulations regulatory limit

¢ lower bound: xMin = 1800 F (1255.37 K), PRA success criterion

¢ upper bound: xMax = 2600(1699.82 K), Urbanic-Heidrick transition temperature.

- Ej _,LJ = E

S He s =
o SR T 8
R T
‘-.—". :: I—: ne :il‘. '-.—". : I—

T C§E CTE

a) (b) ()

Figure 3: Alternating current power recovery paths through: DGs (&), RSST (b) and 138 kV line (). Red lines indicate
electrical path to power Aux cooling system.

4.3 Analysis of Stochastic Polynomial Performance

Classically stochastic polynomials are used to compute mean and higher order statistical moments of the

response (in our case the T max ). While this is the information usually necessary and sufficient to perform
Clad

system optimization and data assimilation, it does not cover every need in the case of safety related
analysis. In fact, high-risk situations are usually present far away from the mean value of the system
response. For these types of analyses, it is important to evaluate the fidelity of the polynomial
representation far away from the region of the response mean.



After performing a few analytical tests, it was immediately made clear that the convergence in the dp
measure was incapable of effectively controlling the error over the estimation of the system response
when not weighted by the probability. This could also be inferred from the fact that in the Hermite-based
interpolation, the overall weight of the error decays exponentially while moving away from the region of
the mean value of the response.

For this reason, usage of fast decaying weighting functions currently seems inappropriate in PRA.
Legendre-based interpolation does not have this disadvantage, given the fact that it uses the standard
norm. Unfortunately, for the moment, RAVEN implements the standard stochastic polynomial approach
where the polynomial interpolating functions are the ones that are orthonormal, with respect to the square
of the probability distribution function (like Hermite for normal distribution). So, it is not currently
possible to use Legendre-based approximation while having the input parameter values normally
distributed.

For this reason, aware of the poor results that would be obtained in evaluating the limit surface using
Hermite-based polynomials, all the input parameter distributions have been switched to uniform
distributions (characterized by the same mean of the corresponding normal distribution) to use Legendre-
based interpolation.

Moreover, two different mathematical representations of the original physical problem were analyzed.
This is due to some difficulties, which were highlighted during the analysis of the results, in the
representation of discontinuous system by the stochastic polynomials. This issue will be discussed more
in detail in the following paragraphs.

4.4  First Set of Tests

The initial test was performed using third order Legendre interpolating polynomials that, in accord with
Eq. 2.35, requires 4* = 256 system evaluations to complete the quadrature formula.
The mean value of the polynomial approximation of system response is then compared with the mean
obtained from 400 Monte Carlo sampling of original system.
More details:
o Input parameters sampled:
o tpeq: recovery time of the first DG auxiliary system
tpes: recovery time of the third DG auxiliary system
tpeor: recovery time of the auxiliary power line
trq13g: recovery time of the main power line

T raiture: failure temperature of the clad. This parameter is sampled posterior, and
Clad

therefore excluded from the dimension of the input space.
o 400 different RELAP-7 inputs have been generated by Monte Carlo sampling of the input space. The

outcomes are used to forecast the mean of Tmax, the location of the limit surface (T max =
Clad Clad

T Faiture), and an overall characterization of the system response.
Clad

¢ The moments needed for a third order complete representation of the system response, with respect to
a Legendre polynomial base, are computed by a quadrature rule coming from a full tensor product of
4 mono-dimensional quadratures with respect to the variables ty.q, tpes, tresr, and Epqsg.

O
O
O
O

o The same 400 inputs, generated by the Monte Carlo, are then used to sample the response of the
system approximated by its polynomial representation. The outcome 1s then used to perform a one to
onc comparison with the results from the initial Monte Carlo on the real system. The mean value is

computed directly using Eq. 3-20.

The mean value of the maximum clad temperature computed by the stochastic polynomials is 1006.5 K
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versus 1071.6 K computed by the Monte Carlo. Using the central limit theorem, the probability that the
mean value computed by the Monte Carlo ig the exact one given by a normal distribution with ¢ = \% =
x/% = 5%. As a consequence, the probability of being the exact mean value, the one coming from the

polynomial approximation, is compatible with a 20 % probability.

In the scenario accident considered, the time evolution of the maximum clad temperature is independent
from the system recovery sequence and is uniquely determined by the moment the first recovered system
gets back online. As a consequence, the mapping from the recovery times (any of the ones considered) to
the maximum clad temperature could be represented by a mapping between the mimmum of the recovery
times and the maximum clad temperature:

Trmax = Taiax (tpg1s tpeas trssts trizs)
Clad Clad

Twax = Trax (tmin = min(tps1, tpess trssts tTlEB))
Clad Clad

From the last equation, it is clear that the representation of Taax as a function of (tp51, tpess trssrs trias)
Clad

is at most of class C, since the change of coordinate t,,;,, = min(tps1, tpes. trssrs triag) 18 of class Cj.
This is a strong indication that a continuous polynomial representation of the system response ig going to
be difficult. In fact, this ig evident when comparing Figure 3 versus Figure 4. In those figures, for the
Monte Carlo sampling of the stochastic polynomial representation and of the real system, the max clad
temperature is represented as a function of ¢,,;,,. Itis clear that the polynomial representation has failed to
match the system response. No further analysis has been performed given the low quality of the results.
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=
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Figure 3: Max clad temperature as a function of £,,;, obtained while sampling the system polynomial representation.
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Figure 4: Max cdad temperature as a function of £ for the original system.
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4.5 Revisited Test Strategy

As already pointed out, the maximum clad temperature is a function of the instant at which the first
recovered system gets back online. Consequently, it would make sense to consider only this variable
when seeking to approximate the system response.

For this case the two uncertain parameters are:

®  {m: minimal time of recovery of any of the auxiliary system

s Trgimure: failure temperature of the clad. This parameter 1s sampled posterior, and therefore excluded
Clad

from the dimension of the input space

For the arguments previously mentioned, the system characterization (maximum clad temperature as a
function of the minimum of the recovery times) of the Monte Carlo would be unaltered, just its sampling
density would change. As a consequence, the profile illustrated in Figure 4 will remain valid. The new
profile obtained by the sampling of the polynomial approximation of the system (mono-dimensional
quadrature with four Gauss-Legendre points) is reported in Figure 5. Clearly, the improvement is
noticeable. This is also confirmed by Table 4, where the mean value comparison is reported. Figures 6
and 7 show the limit surface in the two-dimensional space of the maximum clad temperature and clad
failure temperature, respectively, obtained by a Monte Carlo sampling of the real system (RELAP-7) and
of its polynomial approximation. While numerical differences are still noticeable, the polynomial
approximation is, at least qualitatively, capable to represent the system response.

Table 4: Maximum Clad Temperature Mean value.

M EANMonteCarlo M E€ANgochasticPolynomials Slgm Amean-MonteCarlo T.C.
114391 K 118565 K 5.0% 3.65%
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Figure 5: Stochastic Polynomials max clad temperature (2 uncertain parameters).
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Figure 6: Limit surface from the Monte Carlo sampling of the original system.
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5. Conclusions

The milestone of performing a PRA demo using the Stochastic Polynomial Approach has been fully
achieved. The two sets of calculations performed contributed to the testimony of the good implementation
of the methodology and its intrinsic limitations. Further research is needed to address the main deficiency
highlighted during this initial research stage. First, Legendre interpolation of the system response should
be made available for all types of distribution. Second, a discontinuous decomposition of the input space
should be performed to address the challenge represented by discontinuous mappings. Third, an approach
to eliminate inactive regions of the input space should be considered.
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7. Appendixes

7.1 Appendix 1: Orthonormal Test of the Hermite Polynomial in the
Actual System

From the expression of the Hermite polynomials in the actual system, given (Eq. 3-5) as a function of
the Hermite polynomials in the standard system reported in Table 2, it is possible to write:

He, () a2n?2
e X e —
0 V2n
V2(x —m) vV o2maV2
Hey(x) = 2
g V2
Now the following tests will be performed:
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7.2 Appendix 2: Test of the Translation Rule for the Gauss-Hermite
Quadrature

The purpose of this test is to verify that if £, (x) = He, (x), then its projection properly leads to
$o, = 0and §; = 1. For doing so, we are going to use the Gauss-Hermite quadrature for which points
and weight are given in Table 55.

Table 5: Points and Weights for the Gauss-Hermite quadrature formula

Points Coordinate Weight
2 +1 ﬁ
V2
0 ﬁ 2
3
3

N
+V3 5

The problem could be formulated as follows:

V2 \g SemiEy
(J; m))ﬁe 262 )Vel‘lfy

Given: &, = ’51( (

vz , oy
1. €0=F 31w[x,€x(f5x +m)HeO(x)e4 =0
JZ 53

7 = 7 1 Wiy (\/_x +m)He1(x')e + =1

It is convenient first to reformulate the Gaussian quadrature as follows:

27



En, = V—Z mrfx( i +m) Hel (e 5

= V—Z £xt z ’fn.'x (He;l(xi’)ge_x%z) He,'n(x[-')e%
g

»=0

- Z Wi Z e, (Her, (i) | Hetn (i) = Z Wi, (Het D) | Hem ) Em,

niy=0

1
=— E w; X" He, (x';
Wizl Laxr® i mx( .1)

The desired results follow immediately:
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